第五百一十五章 太阳中微子失踪之谜(1 / 3)

不过很快,乔安华脸上激动的表情便收敛了起来。

“庞教授,不可否认,你这个理论很美妙,但问题是,我们必须得找到你所说的这种惰性中微子,才能证实你的理论正确,按照你这篇论文中计算的结果,这种中微子存在的时间很短,又很难与其他物质发生反应,单单如何设计实验找到它,就是一个天大的难题!”

庞学林淡淡笑道“乔教授,你还记得太阳中微子失踪之谜不?”

“太阳中微子失踪之谜?”

乔安华微微一愣,眉头微微皱了起来。

他当然知道这个在科学史上著名的难题。

二十世纪上半叶,物理学家们普遍相信太阳发光是由于其内部不断发生从氢到氦的核聚变反应。

根据这一理论,在太阳内部每4个氢核(即质子)转化成1个氦核、2个正电子和2个神秘的中微子。

太阳正是由这种核聚变反应释放出来的能量发光发热,哺育着地球上的万物。

随着热核反应的进行,中微子被源源不断地释放出来。

由于4个质子的质量大于1个氦核加上2个正电子和2个中微子的质量,反应要释放出大量的能量。

这些能量的一小部分最终以阳光的形式到达地球。

这种核反应是太阳内部最频繁出现的反应。

中微子可以轻易地从太阳内部逃离出去,其能量并不以光和热的形式出现。

有的时候热核反应产生的中微子能量比较低,带走的能量比较少,则太阳就获得了更多的能量。

如果中微子的能量比较高,太阳得到的能量就会相对少一点。

中微子不带电荷,且没有内部结构。

在基本粒子物理学的标准模型中,中微子是没有质量的。

每秒到达地球表面每平方厘米的太阳中微子大约为1000亿个,但我们却感受不到它们,因为中微子与物质发生相互作用的概率很小。每1000亿个太阳中微子穿过地球时只会有1个与组成地球的物质发生相互作用。由于中微子与其它粒子相互作用的概率微乎其微,它可以轻易地从太阳内部逃逸出来并直接带给我们关于太阳内部核反应的重要信息。

自然界中存在3种不同类型的中微子,太阳内部核反应产生的中微子是电子型中微子,这种中微子的产生是与电子相关联的。另外两种中微子是μ子中微子和t子中微子,它们可以在加速器或者爆炸的星体中产生,分别与带电的μ子和t子相关联。

1964年,雷蒙德·戴维斯和约翰·白考提出了一个实验方案来检验太阳能量的核反应到底是不是聚变反应。

约翰·白考和他的同事利用一种精细的计算机模型计算了不同能量的太阳中微子数量。

由于太阳中微子会与氯元素发生反应释放出放射性氩原子,所以他们还计算了在一个盛满四氯乙烯的巨桶中观测到的个数。

尽管这个想法在当时看来有些不切实际,戴维斯还是相信用一个游泳池大小的盛满纯四氯乙烯的容器作探测器能够测出来理论所预言的每个月产生的氩的数量。

戴维斯最早的实验结果发表于1968年。

他所探测到的事例数只有理论预言值的三分之一。这种理论预言的事例数与实验不一致的问题后来被称为“太阳中微子难题”,更流行的说法“中微子失踪之谜”。

为了解释太阳中微子难题,人们曾提出来3种可能的方案。

第一种方案认为理论计算也许有问题,可能在两个地方出了错或者太阳模型存在问题,导致理论所预言的太阳中微子数量不对,或者计算出来的产生率有问题。

第二种解释认为或许戴维斯的实验出了错。

第三种方案是最大胆的一种,也是讨论最多的一种,它

-->>(本章未完,请点击下一页继续阅读)